Acest site necesită browser-ul să fie activat JavaScript.
Vă rugăm să activați JavaScript și să reîncărcați această pagină.
Site-ul necesită browser-ul pentru a activa cookie-urile pentru a se autentifica.
Vă rugăm să activați cookie-urile și reîncărcați această pagină.
Carte romana
Carte rusa
Carte engleza
Vezi toate cartile
Top branduri cosmetica
Cosmetica Coreeana
Machiaj
Ingrijire ten
Ingrijire par
Ingrijire corp
Produse de baie
Igiena orala
Igiena intima
Igiena sexuala
Cosmetice barbati
Seturi cadou
Naturale si organice
Vezi toate cosmeticele
Top branduri dermatocosmetica
Protectie solara
Seturi cadou si pachete promo
Parfumuri pentru femei
Top branduri femei
Premium brands femei
Parfumuri unisex
Vezi toate parfumurile
Parfumuri pentru barbati
Top branduri barbati
Premium brands barbati
Jucarii si jocuri
Hrana si articole copii
Scutece si servetele
Rechizite si papetarie
Vezi toate produsele
Genti & Accesorii
Bijuterii
Ochelari de soare femei
Ochelari de soare barbati
Top Branduri Genti
Top Branduri Bijuterii
Rame ochelari
Vezi toti ochelarii de soare
Imbracaminte
Ceasuri de dama
Top branduri Ceasuri de Dama
Ceasuri barbatesti
Top branduri Ceasuri Barbatesti
Vezi toate ceasurile
Nutritie & Suplimente
Branduri
Curatenie si intretinere
Bucatarie si servirea mesei
Textile camera
Covoare
Decoratiuni
Kevin J. GrimmGrowth Modeling: Structural Equation and Multilevel Modeling Approaches, Hardcover
în Pickup Point de la 599.99 MDL
în 14 de zile
înainte de plată
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Kevin J. Grimm, PhD, is Associate Professor in the Department of Psychology at Arizona State University, where he teaches graduate courses on quantitative methods. His research interests include longitudinal methodology, exploratory data analysis, and data integration, especially the integration of longitudinal studies. His recent research has focused on nonlinearity in growth models, growth mixture models, extensions of latent change score models, and approaches for analyzing change with limited dependent variables. Dr. Grimm organizes the American Psychological Association's Advanced Training Institute on Structural Equation Modeling in Longitudinal Research and has lectured at the workshop for the past 12 years. Nilam Ram, PhD, is Associate Professor in the Department of Human Development and Family Studies and the Department of Psychology at The Pennsylvania State University. He specializes in longitudinal research methodology and lifespan development, with a focus on how multivariate time-series and growth curve modeling approaches can contribute to our understanding of behavioral change. He uses a wide variety of longitudinal models to examine changes in human behavior at multiple levels and across multiple time scales. Coupling the theory and method with data collected using mobile technologies, Dr. Ram is integrating process-oriented analytical paradigms with data visualization, gaming, experience sampling, and the delivery of individualized interventions/treatment. Ryne Estabrook, PhD, is Assistant Professor in the Department of Medical Social Sciences at Northwestern University. His research combines multivariate longitudinal methodology, open-source statistical software, and lifespan development. His methodological work pertains to developing new methods for the study of change and incorporating longitudinal and dynamic information into measurement. Dr. Estabrook is a developer of OpenMx, an open-source statistical software package for structural equation modeling and general linear algebra. He applies his methodological and statistical research to the study of lifespan development, including work on early childhood behavior and personality in late life.
Am aprecia părerea ta! Evaluați acest produs
Nu există comentarii de la alți utilizatori.