Этот веб-сайт требует, чтобы для Вашего браузера был включен JavaScript.
Пожалуйста, включите JavaScript и перезагрузите страницу.
Для веб-сайта требуется, чтобы Ваш браузер разрешил использование файлов cookie для входа в систему.
Пожалуйста, активируйте cookies и перезагрузите страницу.
Carte romana
Carte rusa
Carte engleza
Vezi toate cartile
Top branduri cosmetica
Cosmetica Coreeana
Machiaj
Ingrijire ten
Ingrijire par
Ingrijire corp
Produse de baie
Igiena orala
Igiena intima
Igiena sexuala
Cosmetice barbati
Seturi cadou
Naturale si organice
Vezi toate cosmeticele
Top branduri dermatocosmetica
Protectie solara
Seturi cadou si pachete promo
Parfumuri pentru femei
Top branduri femei
Premium brands femei
Parfumuri unisex
Vezi toate parfumurile
Parfumuri pentru barbati
Top branduri barbati
Premium brands barbati
Jucarii si jocuri
Hrana si articole copii
Scutece si servetele
Rechizite si papetarie
Vezi toate produsele
Genti & Accesorii
Bijuterii
Ochelari de soare femei
Ochelari de soare barbati
Top Branduri Genti
Top Branduri Bijuterii
Rame ochelari
Vezi toti ochelarii de soare
Imbracaminte
Ceasuri de dama
Top branduri Ceasuri de Dama
Ceasuri barbatesti
Top branduri Ceasuri Barbatesti
Vezi toate ceasurile
Nutritie & Suplimente
Branduri
Certificate Cadou
Felicitari
Plicuri
Cutii si Accesorii
Curatenie si intretinere
Bucatarie si servirea mesei
Textile camera
Covoare
Decoratiuni
Ian GoodfellowDeep Learning, Hardcover
в Пункте приема от 99,9 лей
Даже распечатанный
Перед оплатой
``Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.`` -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX
Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Мы хотели бы узнать Ваше мнение! Оценить и пересмотреть этот пункт
Нет ни одного отзыва от других пользователей.