Этот веб-сайт требует, чтобы для Вашего браузера был включен JavaScript.
Пожалуйста, включите JavaScript и перезагрузите страницу.
Для веб-сайта требуется, чтобы Ваш браузер разрешил использование файлов cookie для входа в систему.
Пожалуйста, активируйте cookies и перезагрузите страницу.
Carte romana
Carte rusa
Carte engleza
Vezi toate cartile
Top branduri cosmetica
Cosmetica Coreeana
Machiaj
Ingrijire ten
Ingrijire par
Ingrijire corp
Produse de baie
Igiena orala
Igiena intima
Igiena sexuala
Cosmetice barbati
Seturi cadou
Naturale si organice
Vezi toate cosmeticele
Top branduri dermatocosmetica
Protectie solara
Seturi cadou si pachete promo
Parfumuri pentru femei
Top branduri femei
Premium brands femei
Parfumuri unisex
Vezi toate parfumurile
Parfumuri pentru barbati
Top branduri barbati
Premium brands barbati
Jucarii si jocuri
Hrana si articole copii
Scutece si servetele
Rechizite si papetarie
Vezi toate produsele
Nutritie & Suplimente
Branduri
Certificate Cadou
Felicitari
Plicuri
Cutii si Accesorii
Frances BuontempoGenetic Algorithms and Machine Learning for Programmers: Create AI Models and Evolve Solutions, Paperback
в Пункте приема от 99,9 лей
Даже распечатанный
Перед оплатой
Description
Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you.
Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems.
In this book, you will:
Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon.
What You Need:
Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.
About the author
Frances Buontempo is the editor of ACCU's Overload magazine (https: //accu.org/index.php/journal/overload_by_cover). She has published articles and given talks centered on technology and machine learning. With a PhD in data mining, she has been programming professionally since the 1990s. During her career as a programmer, she has championed unit testing, mentored newer developers, deleted quite a bit of code and fixed a variety of bugs.
Мы хотели бы узнать Ваше мнение! Оценить и пересмотреть этот пункт
Нет ни одного отзыва от других пользователей.