Этот веб-сайт требует, чтобы для Вашего браузера был включен JavaScript.
Пожалуйста, включите JavaScript и перезагрузите страницу.
Для веб-сайта требуется, чтобы Ваш браузер разрешил использование файлов cookie для входа в систему.
Пожалуйста, активируйте cookies и перезагрузите страницу.
Carte romana
Carte rusa
Carte engleza
Vezi toate cartile
Top branduri cosmetica
Cosmetica Coreeana
Machiaj
Ingrijire ten
Ingrijire par
Ingrijire corp
Produse de baie
Igiena orala
Igiena intima
Igiena sexuala
Cosmetice barbati
Seturi cadou
Naturale si organice
Vezi toate cosmeticele
Top branduri dermatocosmetica
Protectie solara
Seturi cadou si pachete promo
Parfumuri pentru femei
Top branduri femei
Premium brands femei
Parfumuri unisex
Vezi toate parfumurile
Parfumuri pentru barbati
Top branduri barbati
Premium brands barbati
Jucarii si jocuri
Hrana si articole copii
Scutece si servetele
Rechizite si papetarie
Vezi toate produsele
Genti & Accesorii
Bijuterii
Ochelari de soare femei
Ochelari de soare barbati
Top Branduri Genti
Top Branduri Bijuterii
Rame ochelari
Vezi toti ochelarii de soare
Imbracaminte
Ceasuri de dama
Top branduri Ceasuri de Dama
Ceasuri barbatesti
Top branduri Ceasuri Barbatesti
Vezi toate ceasurile
Nutritie & Suplimente
Branduri
Certificate Cadou
Felicitari
Plicuri
Cutii si Accesorii
Curatenie si intretinere
Bucatarie si servirea mesei
Textile camera
Covoare
Decoratiuni
Ethem AlpaydinIntroduction to Machine Learning, Hardcover
в Пункте приема от 99,9 лей
Даже распечатанный
Перед оплатой
A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks.
The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Machine learning underlies such exciting new technologies as self-driving cars, speech recognition, and translation applications. This substantially revised fourth edition of a comprehensive, widely used machine learning textbook offers new coverage of recent advances in the field in both theory and practice, including developments in deep learning and neural networks.
The book covers a broad array of topics not usually included in introductory machine learning texts, including supervised learning, Bayesian decision theory, parametric methods, semiparametric methods, nonparametric methods, multivariate analysis, hidden Markov models, reinforcement learning, kernel machines, graphical models, Bayesian estimation, and statistical testing. The fourth edition offers a new chapter on deep learning that discusses training, regularizing, and structuring deep neural networks such as convolutional and generative adversarial networks; new material in the chapter on reinforcement learning that covers the use of deep networks, the policy gradient methods, and deep reinforcement learning; new material in the chapter on multilayer perceptrons on autoencoders and the word2vec network; and discussion of a popular method of dimensionality reduction, t-SNE. New appendixes offer background material on linear algebra and optimization. End-of-chapter exercises help readers to apply concepts learned. Introduction to Machine Learning can be used in courses for advanced undergraduate and graduate students and as a reference for professionals.
Мы хотели бы узнать Ваше мнение! Оценить и пересмотреть этот пункт
Нет ни одного отзыва от других пользователей.