Acest site necesită browser-ul să fie activat JavaScript.
Vă rugăm să activați JavaScript și să reîncărcați această pagină.
Site-ul necesită browser-ul pentru a activa cookie-urile pentru a se autentifica.
Vă rugăm să activați cookie-urile și reîncărcați această pagină.
Carte romana
Carte rusa
Carte engleza
Vezi toate cartile
Top branduri cosmetica
Cosmetica Coreeana
Machiaj
Ingrijire ten
Ingrijire par
Ingrijire corp
Produse de baie
Igiena orala
Igiena intima
Igiena sexuala
Cosmetice barbati
Seturi cadou
Naturale si organice
Vezi toate cosmeticele
Top branduri dermatocosmetica
Protectie solara
Seturi cadou si pachete promo
Parfumuri pentru femei
Top branduri femei
Premium brands femei
Parfumuri unisex
Vezi toate parfumurile
Parfumuri pentru barbati
Top branduri barbati
Premium brands barbati
Jucarii si jocuri
Hrana si articole copii
Scutece si servetele
Rechizite si papetarie
Vezi toate produsele
Genti & Accesorii
Bijuterii
Ochelari de soare femei
Ochelari de soare barbati
Top Branduri Genti
Top Branduri Bijuterii
Rame ochelari
Vezi toti ochelarii de soare
Imbracaminte
Ceasuri de dama
Top branduri Ceasuri de Dama
Ceasuri barbatesti
Top branduri Ceasuri Barbatesti
Vezi toate ceasurile
Nutritie & Suplimente
Branduri
Curatenie si intretinere
Bucatarie si servirea mesei
Textile camera
Covoare
Decoratiuni
Mark J. Van Der LaanTargeted Learning in Data Science: Causal Inference for Complex Longitudinal Studies, Hardcover
în Pickup Point de la 599.99 MDL
în 14 de zile
înainte de plată
Contributor(s):
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011.
Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics.
Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose's methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
Am aprecia părerea ta! Evaluați acest produs
Nu există comentarii de la alți utilizatori.